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On the basis of the idea of the phases of a fluidized bed as coexisting continuous 
media, the mean motion of the phases established with different initial distribu- 
tions of the fluidizing medium is investigated. 

The intensity of mixing and various bulk processes in a fluidized bed, and hence also 
the efficiency of operation of equipment based on such beds, is determined by the features 
of the small-scale random pulsations of the particles and fluid and also by their large- 
scale ordered flows. The form and level of development of the two types of motion and the 
local structure of the bed depend very strongly on the equipment used to introduce the fluid- 
izing agent in the bed and, in particular, on its initial velocity profile. Although much 
empirical information has been accumulated on the relation between the characteristics of 
the distributing agent and the observed hydrodynamic properties of the fluidized bed, the 
theoretical generalization necessary for rational control of the bed structure and the motion 
of its phases does not actually exist. 

A priori, two basic mechanisms by which the initial fluidizing-agent distribution will 
affect the resulting large-scale motion may be isolated. In significantly inhomogeneous 
beds, especially when the medium is introduced through nozzles or through the holes of a 
perforation, the bed structure and phase motion is mainly determined by the motion and 
coalescence of the interacting bubbles initially formed in the near-lattice region -- for 
example, at the individual elementary jets issuing from nozzles or holes. In the bed, 
there appear stable regions of preliminary bubble ascent and regions depleted of bubbles, 
in which, respectively, the maximum and minimum fluidizing-agent velocities are reached 
and ascending or descending motion of the disperse phase is realized (see [1-4], for exam- 
ple). With increase in height above the initial cross section, the individual bubbles merge, 
their total number decreases, and the fluidizing-agent velocity distribution characteristic 
of the lower levels, with a few maxima, changes to a profile with a single maximum close 
to the axis of the apparatus [4]; in sufficiently narrow equipment, the subsequent develop- 
ment of a piston mode is possible [3]. Analysis of these profiles in various cross sections 
and the associated disperse-phase circulation in this case may be conducted on the basis of 
a theory of the evolution of the diluted phase of the fluidized bed, taking bubble-coales- 
cence into account [5]. 

The other case, which is no less important in practice, is that typical of near-homo- 
geneous beds, where the establishment of large-scale motion of the phases is due primarily 
to the retarding effect of the equipment walls on the flow of fluidizing medium, and occurs 
in principle in the same way as the development of a flux of single-phase viscous fluid in 
channels. In this case, regardless of the form of the initial fluidizing-medium velocity 
profile, a characteristic dome-shaped, near-parabolic profile is established in the limit, 
i.e., at sufficiently large distances from the inlet cross section [6-8]. The theory of the 
development of such a flow is outlined below. 

Continuum Model of Bed Phases 

In analyzing motion with a characteristic spatial scale considerably exceeding the size 
of the bed particles and the mean distance between them, it is natural to describe the con- 
tinuous and disperse phases as two interpenetrating continuous media. The equations of mass 
and momentum conservation for these media in steady conditions may be written in the form [9] 
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Distribution of the dimensionless 
bulk velocity of the fluidizing medium in 
cross sections of the fluidized bed corres- 
ponding to the initial distribution in Eq. 
(ii) with At =0 (a), 1 (b), --i (c); exp. 
(--B~IRe) =i (i), 0.6 (2), 0.4 (3), 0.2 
(4), and 0 (5). 

do e (CoV) Co = VOo - -  f @ doeg, div (eCo) = O, 
(1) 

dip (clV) El = VO1 @- f .4- dlpg, div (p~) = 0 ,  p = 1 -- e. 

Note t h a t  i n v e s t i g a t o r s  c o n s i d e r i n g  a f l u i d i z e d  bed on the  b a s i s  of  t h e  con t inuum a p p r o x i m a -  
t i o n  have p roceeded  from p a r t i c u l a r  v a r i a n t s  o f  Eq. (1) which d i f f e r  in  t he  e m p i r i c a l  r e p r e -  
s e n t a t i o n s  chosen  f o r  the  e f f e c t i v e  s t r e s s  c e n s o r s  go and ~1 and the  p h a s e - i n t e r a c t i o n  f o r c e  
f ( s ee  [ 1 0 - 1 2 ] ,  f o r  example ) .  

I t  i s  p o s s i b l e  to  o b t a i n  a r i g o r o u s  r e p r e s e n t a t i o n  f o r  t h e s e  q u a n t i t i e s  o n l y  in  the  
c a s e  o f  v e r y  sma l l  p a r t i c l e s ,  when t h e  Reyno lds  number c h a r a c t e r i z i n g  t h e i r  f l ow i s  o f  t h e  
o r d e r  of  u n i t y  or  l e s s  [ 9 ] .  Here ,  where t he  t h e o r y  i s  to  be used  a l s o  f o r  l a r g e - p a r t i c l e  
beds ,  t h e s e  q u a n t i t i e s  w i l l  be s p e c i f i e d  s e m i e m p i r i c a l l y ,  s t a r t i n g  f rom a s e r i e s  o f  s i m p l i -  
f y i n g  a s s u m p t i o n s .  

F i r s t  of  a l l ,  t h e  bed p o r o s i t y  r i s  assumed to  be u n i f o r m  o v e r  the  whole  bed vo lume.  
I f  t h e  i n i t i a l  n o n u n i f o r m i t y  o f  t h e  f l u i d i z i n g - a g e n t  d i s t r i b u t i o n  i s  no t  too  l a r g e ,  t h i s  
a s s u m p t i o n  i s  v e r y  c l o s e  to  t he  t r u t h .  However,  as  d i s c u s s e d  i n  d e t a i l  i n  [ 1 3 ] ,  i t  n e c e s -  
s i t a t e s  the  i n t r o d u c t i o n  o f  a new i n d e p e n d e n t  v a r i a b l e :  t he  p r e s s u r e  pl  o f  t he  medium mode l -  
ing  the  d i s p e r s e  phase .  F u r t h e r ,  by  a n a l o g y  w i t h  the  model o f  an i d e a l  s i n g l e - p h a s e  f l u i d ,  
t he  p s e u d o v i s c o u s  s t r e s s  i n  b o t h  p h a s e s  due to  t h e i r  p s e u d o t u r b u l e n t  p u l s a t i o n s  i s  n e g l e c t e d  
i n  the  f i r s t  a p p r o x i m a t i o n .  Then t he  media m o d e l i n g  t he  d i s p e r s e  and c o n t i n u o u s  p h a s e s  must  
be r e g a r d e d ,  r e s p e c t i v e l y ,  as  an i d e a l  and a v i s c o u s  Newtonian  f l u i d ,  i . e . ,  as  s a t i s f y i n g  
the following relations 

V6o : - - V P o + ~ A c o ,  V q l = - - V P ~ ,  (2) 

where ~ is some effective viscosity coefficient. A model of this kind was considered ear- 
lier in [13]. In the limiting case opposite to Eq. (2), when the effective viscosity of 
the disperse phase is much larger than the viscosity of the continuous phase, it is possible 
to regard the particles as fixed in the first approximation and to investigate the filtra- 
tion of the fluidizing medium in the porous body that they form [14]. 

The force f is represented in traditional form 

i = - -  pdg -}- Ok (Co - -  cl), d = doe -~- dip, . (3) 

corresponding to a linear approximation of the phase-interaction force in the given range 
of relative phase velocity with empirical coefficient k. 

In the inlet cross section of the bed, the distribution of the fluidizing-agent flow 
rate v x= eCox is specified; the ve&ocity ctx in this cross section must obviously vanish. 
On the vertical walls of the apparatus, the velocity co and the horizontal components of 
the velocity ci vanish. Thus, the effect of a thin near-wall layer and the resulting 
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"slippage" of the fluidizing agent is neglected. Within the framework of the proposed model, 
when the disperse-phase viscosity is small and disregarded, this is completely justified, 
as shown in [14] in the case where the particle size is much less than the dimensions of the 
apparatus. Considering a cylindrical apparatus, so as to be specific, and assuming the flow 
to be axisymmetric, the boundary conditions are written as follows 

ec0~ = V0 [t ~ F (r/R)], E l X  = O, X - - -  0; 

c0~ = c0~ = c~ = 0, r = R; c0~ = Clr = 0, r = 0, (4 )  

w h e r e  t h e  f u n c t i o n  F ( r / R )  i s  d e f i n e d  so  t h a t  i t s  i n t e g r a l  o v e r  t h e  c y l i n d e r  c r o s s  s e c t i o n  
i d e n t i c a l l y  v a n i s h e s .  

No b o u n d a r y  c o n d i t i o n s  a r e  i m p o s e d  on t h e  i n i t i a l l y  unknown u p p e r  b o u n d a r y  o f  t h e  b e d ,  
i . e . ,  m o t i o n  i n  an  i n f i n i t e l y  t a l l  b e d  i s  a c t u a l l y  c o n s i d e r e d .  A c c o r d i n g  t o  t h e  d a t a  o f  
[4 ,  7,  8 ] ,  t h e  e f f e c t  o f  a f r e e  u p p e r  s u r f a c e  on t h e  m o t i o n  i n s i d e  t h e  l a y e r  i s  n o t  v e r y  
l a r g e .  A t  t h e  same t i m e ,  t a k i n g  i t  i n t o  a c c o u n t  w o u l d  c o n s i d e r a b l y  c o m p l i c a t e  t h e  s o l u t i o n  
o f  t h e  p r o b l e m  and  i s  h a r d l y  e x p e d i e n t  a t  p r e s e n t .  

Motion of the Continuous Phase 

Under the given simplifying assumptions, the boundary problem obtained for Eq. (i) with 
Eqs. (2) and (3) and the boundary conditions in Eq. (4) reduces to the simpler problem of 
the development of a flow of single-phase viscous liquid in a tube. To solve this problem, 
such methods are available as the Boussinesq, which leads to good results far from the inlet 
cross section but poor results closer, and the Schiller, which, conversely, leads to good 
results at the inlet but poor results further away [15]. Here, use is made of the more 
efficient method of S. M. Targ, which not only combines the advantages of the Boussinesq and 
Schiller methods, giving good agreement with experiment, but also considerably simplifies 
the calculations [15]. 

According to this method, it is assumed that Cor <<Cox, ~2Cox/~x2 <<~2Cox/~r2, and the 
inertial terms on the left-hand side of the momentum-conservation equations in Eq. (i) are 
transformed in the manner of the well-known Ozeen approximation, replacing aCox by Vo and 
Cor, Clx, and Cir by zero. Then, adding the momentum-conservation equations of the two 
phases, it is found from the r components of the resulting equation that po +pi depends only 
on x, while the x component of this equation is written in the form 

( O~co~ 1 OCo~ doVo OCox _ d (Po + P~) + ~ ~ -- dg. (5) 
OX dx \ Or e r Or ] 

I n  a d d i t i o n  t o  Eq.  ( 5 ) ,  t h e  m a s s - c o n s e r v a t i o n  e q u a t i o n  o f  t h e  c o n t i n u o u s  p h a s e  f r o m  Eq.  (1)  
and the boundary conditions on co from Eq. (4) are considered. 

The dimensionless variables and parameters 

x r eCo~ (1 + F) V0 eC0r 
, 03 . . . . . .  , V x -  , V r -  , 

R R Vo Vo 

P = 8 Po-[- Pl -t- dgx - -  P', R e - -  VoW,  v - -  ~z 
doV~ v do 

are now introduced, and the constant P' is chosen so that P vanishes at x = 0. 
ables of Eq. (6), the autonomous problem for Vx, Vr, and P takes the form 

_ _  ( dP ) d2F l dF 02V~ ~- 1 OV~ _ R e  OV~ + 
003 2 03 003 c?~ d~ d03 2 03 d03 

cgV~ _~ 1 O(03Vr) _0; V ~ = P = 0 ,  ~ - - 0 ;  
O~ 03 003 

V ~ = - - I - - F ( 1 ) ,  V r = 0 ,  03= 1; V ~ = 0 , . 0 3 = 0  

and  c o i n c i d e s  w i t h  one  o f  t h e  p r o b l e m s  c o n s i d e r e d  i n  [ 1 5 ] .  

The f u n c t i o n  F(m) a p p e a r i n g  i n  E q s .  (4 )  and  (7 )  i s  w r i t t e n  i n  t h e  f o r m  

F (03) = 2 A.IVo (~03) -- J~. (~)1,  
n = l  

(6) 

In the vari- 

(7) 

(8) 
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Fig. 2. Bulk velocity profile of gas in fluidized 
bed in cross sections at a distance of 36 (a), 56 
(b), 96 (c), and 136 mm (d); the curves correspond 
to theory and the points to experimental data from 
[8], convex and concave initial distributions; points 
to the left and right of the axis ~= 0 correspond to 
different experiments performed in identical con- 
ditions; d) theoretical limiting velocity profile. 
Vx, m/see. 

where a n are the successive roots of the equation Jo(x) =0, and Jm(x) are Bessel functions. 
For practical purposes, it is evidently sufficient to approximate the real initial velocity 
profile of the fluidizing medium by only the first few terms of the series in Eq. (8). 

Omitting the details of the fairly lengthy computations, which are available in [15], 
the final expressions for P and vx/Vo are 

8 x I ~ (  I --~--2) -- 4 Z {-~-~ ~,-]- 
n ~ l  h = l  

-- 2 1 - -  - - 4  ~ +  ~z2n [ 32k 
v o  h=l n~l 

.c";,--[3~ } e x p (  Re R ) '  
n =  1 

I( ) Jo ([~hr/R) exp h x , 
Yo (~k) Re R 

(9) 

where ~k are the successive roots of the equation J2(x) = 0, and the factors An are presumed 
known. 

Integration of the second relation in Eq. (7), taking the expression for vx/Vo in Eq. 
(9) into account, gives 

v~ 4 1 + ~2 A~J , , (~)  1 r 1 Jl(~kr/R) exp h x 
- - V o -  ~e k=, k. = ~:---~--~ 2 R ~ Jo(~k) , Re R ( i 0 )  

This formula describes the intensity of the radial flow of fluidizing agent to the axis of 
the cylindrical equipment. 

Thus, the limiting fluidizing-agent velocity profile does not depend on its initial 
distribution and corresponds to Poiseuille flow, and its development with increasin~ dis- 
tance from the inlet cross section conforms to the same law as in the case of a single-phase 
fluid. Note that the expressions for vx and v r are universal in the sense that they do not 
depend on the coefficient of hydrodynamic phase interaction, k, and moreover they do not 
change if the approximation in Eq. (3) is replaced by any other formula for f. 

The establishment of the limiting axial-velocity profile for the fluidizing agent is 
shown in Fig. 1 in the case of an initial profile of the form 
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for different values of A~. Since the terms of the series for vx/Vo in Eq. (9) rapidly 
diminish, only the term with k = 1 is calculated. In Fig. 2, as an example, the theory is 
compared with two of the experiments in [8] for round particles of alumosilicate catalyst 
of diameter (3.5-4).10 -3 m fluidized by air in an apparatus of diameter D=0.172 m, with 
fluidization number N = 4 and a motionless-filling height H =0.75D = 0.129 m. The initial 
velocity profile determined experimentally is approximated by Eq. (ii), and Re is found 
by trial and error. As is evident from Fig. 2, agreement between theory and experiment is 
satisfactory. Comparison with other experiments in [8] on the whole confirms this conclu- 
sion. 

However, it should be noted that at fluidization numbers N = 1-2 the experimental velo- 
city profiles for air are more sloping than would follow from the theory. This is evidently 
because in these conditions there are direct mechanical interactions between the particles, 
resulting in an effective viscosity of the disperse phase, which was neglected in the 
theory. In fact, it follows from [14] that increase in this viscosity leads to compression 
of the profile in the central part of the apparatus in comparison with the parabolic form. 
In the general case, the true profile must lie between the Poiseuille parabolic profile 
and an almost plane profile (the latter is realized for filtration in a fixed charge of par- 
ticles and is discussed in detail in [14]). 

In addition, the observed compression of the velocity profile may be associated with 
the effect of the free upper surface of the bed on the flow and also with the onset of signi- 
ficant bubble formation. In fact, a chain of bubbles rising one after the other into the 
upper part of the bed may be roughly interpreted as the flare of a two-phase jet in which the 
distribution is approximately described by a Schlichting profile much steeper than the para- 
bolic Poiseuille profile. This agrees with the ideas of the so-called "flare" approach 
adopted in [4, 16]. 

Motion of the Disperse Phase 

Taking account of Eqs. (2) and (3) and the assumptions made above, the components of 
the momentum-conservation equation for the disperse phase from Eq. (i) are written in the 
form 

- -  Opl/ax -k pk (Cox - -  c~x) - -  (di --  do) pg:O, --  Opt~Or ~ pk (Cor--Clr):O. (12) 

If the operators ~/~x and r-1(3/Dr)r, respectively, act on these equations, and the results 
are added, taking the mass-conservation equation in Eq. (i) into account, the Laplace equa- 
tion for p~ is obtained. The boundary conditions which must be imposed on pl are obtained 
from the first and second relations in Eq. (12), taking account of Eq. (4) written at x=O 
and r =R, respectively, and the condition of axial symmetry. Thus, in the variables of Eq. 
(6), the following problem for the dimensionless pressure of the disperse phase is obtained 

02P1 1 0 { aPl ~ ~Pl a~ 2 - k - -  - - \ c o  = 0 ,  P~-- ; 
co Oo~ Oo~ ] doV~ 

- ~ ) ~ o V ~  k[1-} -F(o) ) l - -e (d~- -d)  =pII(co), ~=0 ;  (13) 

OP1 _ 0 ,  o)=0; OP1 _ O, o)=- 1. 
0o) 0o~ 

Using the method of separation of variables, a more general solution satisfying the 
conditions at ~ = 0 and m = 1 is written, in the form 

Pi : P {Bo~- ~ Bndo(?no) exp ( - -  ?~)} (14) 
n ~ ]  

(insignificant constants in determining PI are omitted), where Yn are the successive roots 
of the equation J~(x) ~ J1(x) =0. The series corresponding to Eq. (14) for the derivative 
8PI/~ at ~=0 consists of the Din--Bessel expansion of the function ~(~); in other words 

1 1 

j j B o = - - 2  ~H(~)d~, B~-- 2 ~H(~)Jo(?~)d~,  n ~ l .  (15) 
Y~ 

0 0 
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When ~ § PI must remain finite, and therefore Bo = 0 is necessary. Taking account 
of the condition imposed on the function F~) when it was introduced in the boundary condi- 
tions in Eq. (4), it is evident that this requires that the following relation hold 

k (Vo/e) = (d~ - -  d) g ,  (16) 
this being, essentially, the usual equation for determining the porosity constant of a bed 
which has previously been unknown. In view of Eq. (16), the definition of H(~) in Eq. (13) 
yields 

H (o) = (pkR/doVo) F (o) (17) 

I 

B,~ - doVoPkR b~, b~-- 7~2 S oF. (o)J0(?~o)do, (18) 
0 

and further 

which finally determines the value of PI in Eq. (14). 

Calculating the derivatives 3pl/3x and 3pl/3r on the basis of the relations given above, 
and using Eqs. (12) and (18), expressions are obtained for the components of the relative 
phase velocity 

Ux ~ Cox - -  C l x ~  U - -  Vos ~ ,?,ib,~,/o (?,,(o) exp (-- ?,,~), 
t l ~ l  

(19) 
V0 ~ ,  (dl --  d) g 

u~ = Cot - -  clr - - ynbn71 (7~o) exp (-- ?~), U = . Z.a k 
n ~ l  

Equa t ions  (9) ,  (10) ,  and (19) a l so  a l low the  components of the  mean d i s p e r s e - p h a s e  
v e l o c i t y  el  to be de t e rmined ,  and Eqs. (9) and (14) a l low the  d i s t r i b u t i o n  of the  s t a t i c  
fluidizing-agent pressure po in the bed to be found. 

For uniform initial distribution of the fluidizing medium, the relative phase velocity 
is uniform over the whole bed volume (u x = U, ur = 0), and pl = O, so that the pressure po is 
easily found from Eqs. (6) and (9) and it is seen to be independent of r. In this case, 
there is a single circulation contour of the disperse phase, with upward motion at the axis 
of the apparatus and downward motion at the wall. With a nonuniform distribution, the 
fields of u and po are nonuniform. If the excess of fluidizing medium is supplied close 
to the wall, there arises a second circulation contour of the disperse phase, occupying the 
lower part of the bed, in which the particles move downwards in regions close to the axis 
and directly at the wall and upwards between them. The quantitative characteristics of 
macroscopic motion of the two phases are not difficult to obtain, by investigating in 
detail the above relations. 

In conclusion, the basic limitations of the theory proposed, removal of which would be 
desirable in its further development, will be enumerated. First, the effect of the "dilute" 
bubble phase on the distribution of flows in the bed is assumed to be weak. For this to be 
the case, the bubble dimensions, and also their bulk concentration, must be small. It is 
clear that this assumption that the bubbles play an inconsiderable role is particularly 
easily violated in gas-fluidized beds at some distance from the gas-distributing lattice. 
To obviate this assumption, it would be necessary to introduce into the analysis some of 

the considerations discussed in [5]. 

Secondly, the effective viscosity of the disperse phase has been neglected, which 
restricts the application of the theory to situations where direct friction of the particles 
and their pseudoturbulent motion is relatively weak. Thirdly, the motion has in fact been 
investigated in an infinitely tall bed, and no account at all has been taken of the stabiliz- 
ing influence of the free upper surface of the bed. This type of fluidized bed is formed, 
for example, in the removal of crushed rock in drilling oil and gas wells [17] and in a 
number of other circumstances. However, in most cases that are of practical interest, the 
height of the fluidized bed is commensurate with its transverse dimensions, and the assump- 
tion made cannot, generally speaking, be regarded as correct. In such cases, the limiting 
profiles of the mean phase velocity may simply not be established, and a better description 
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of the fluidizing-agent motion will possibly be obtained from the solution of the filtration 
problem within the framework of the assumption that the disperse phase is on average almost 
motionless. To remove these limitations would require significant modification in the for- 
mulation of the problem. In the first case, it would be necessary to introduce an effective 
viscous stress tensor in the momentum-conservation equation of the disperse phase and to 
assume that the viscous stress in both phases may be anisotropic (the phases themselves are 
regarded as non-Newtonian viscous fluids), in the second case it would be necessary to con- 
sider the problem with an unknown upper bed boundary or, if the boundary is assumed to be 
known from any additional considerations, to impose on this boundary the condition that pl 
and the normal velocity component cl vanish. 

NOTATION 

A n , Bn, bn, coefficients of the series in Eqs. (8) and (18); c, mean velocity; d, den- 
sity; F, function introduced in Eq. (4); f, phase-interaction force; g, acceleration due to 
gravity; k, phase-interaction coefficient; p, P, dimensional and dimensionless pressure; R, 
radius of apparatus; r, radial coordinate; u, U, relative gas velocity and limiting value 
of its modulus; V, V, dimensional and dimensionless bulk velocity of fluidizing agent; Vo, 
mean value of Vox in the initial cross section; x, axial coordinate; an, 8n, Yn, roots of 
Bessel functions; s, porosity; ~, ~, effective dynamic and kinematic viscosity of fluidiz- 
ing agents; ~ =x/R; K, function introduced in Eq. (13); p =i -- ~; ~ effective stress ten- 
sor; w=r/R; the subscripts 0 and 1 correspond to continuous and disperse phases of the bed; 
Re = VoR/v. 
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